Symmetry-Driven Decision Diagrams for Knowledge Compilation
نویسندگان
چکیده
In this paper, symmetries are exploited for achieving significant space savings in a knowledge compilation perspective. More precisely, the languages FBDD and DDG of decision diagrams are extended to the languages Sym-FBDDX,Y and Sym-DDGX,Y of symmetry-driven decision diagrams, where X is a set of ”symmetry-free” variables and Y is a set of ”top” variables. Both the time efficiency and the space efficiency of Sym-FBDDX,Y and Sym-DDGX,Y are analyzed, in order to put those languages in the knowledge compilation map for propositional representations. It turns out that each of Sym-FBDDX,Y and Sym-DDGX,Y satisfies CT (the model counting query). We prove that no propositional language over a set X ∪ Y of variables, satisfying both CO (the consistency query) and CD (the conditioning transformation), is at least as succinct as any of Sym-FBDDX,Y and Sym-DDGX,Y unless the polynomial hierarchy collapses. The price to be paid is that only a restricted form of conditioning and a restricted form of forgetting are offered by Sym-FBDDX,Y and Sym-DDGX,Y . Nevertheless, this proves sufficient for a number of applications, including configuration and planning. We describe a compiler targeting Sym-FBDDX,Y and Sym-DDGX,Y and give some experimental results on planning domains, highlighting the practical significance of these languages.
منابع مشابه
Decision Support using Finite Automata and Decision Diagrams
This thesis considers the area of constraint programming, more specifically, knowledge compilation for the use in decision support. In particular decision support for configuration problems is considered. The main contributions of the thesis are the following: Decision support on unbounded string domains A technique is presented that offers decision support for CSPs that contain variables on un...
متن کاملA Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams
Valued decision diagrams (VDDs) are data structures that represent functions mapping variable-value assignments to non-negative real numbers. They prove useful to compile cost functions, utility functions, or probability distributions. While the complexity of some queries (notably optimization) and transformations (notably conditioning) on VDD languages has been known for some time, there remai...
متن کاملCompiling Probabilistic Logic Programs into Sentential Decision Diagrams
Knowledge compilation algorithms transform a probabilistic logic program into a circuit representation that permits efficient probability computation. Knowledge compilation underlies algorithms for exact probabilistic inference and parameter learning in several languages, including ProbLog, PRISM, and LPADs. Developing such algorithms involves a choice, of which circuit language to target, and ...
متن کاملKnowledge Compilation for Itemset Mining
Mining frequently occurring patterns or itemsets is a fundamental task in datamining. Many ad-hoc itemset mining algorithms have been proposed for enumerating frequent, maximal and closed itemsets. The datamining community has been particularly interested in finding itemsets that satisfy additional constraints, which is a challenging task for existing techniques. In this paper we present a nove...
متن کاملOn the Relative Succinctness of Sentential Decision Diagrams
Sentential decision diagrams (SDDs) introduced by Darwiche in 2011 are a promising representation type used in knowledge compilation. The relative succinctness of representation types is an important subject in this area. The aim of the paper is to identify which kind of Boolean functions can be represented by SDDs of small size with respect to the number of variables the functions are defined ...
متن کامل